
Application
Note

NM-AN03 – Speed Control using NanoMuscles
Rev 1.7 – 29 February 2004
Applicable NanoMuscle Families: RS Rotary

In their standard form all NanoMuscles can provide simple full-range motion by simply
applying power to the N1/N2 pins via a 2-transitor drive circuit. The rate at which this
motion will occur will vary dependant on, among other things, the load, friction in any
linkage, voltage level and ambient temperature. Although for many applications a simple
“move as fast as you can” approach is satisfactory, other applications require that the
speed of motion can be controlled. A typical requirement is for a balanced, symmetric
cycle of rotation and return of the NanoMuscle, independent of any variable operating
conditions – typically voltage level and ambient temperature.

The speed of rotation can be controlled in a NanoMuscle using a Pulse Width Modulation
(PWM) signal to the drive circuit rather than simply pulling it high. The speed of motion
will be governed by the duty cycle of this PWM signal.

 On Time Volts

 +3v

Time
 Period

Duty Cycle = On Time
Period

The larger the duty cycle, the faster the NanoMuscle will move. Within certain
constraints the actual period of the PWM does not have any affect. Unlike the control of
some other devices, NanoMuscles can operate at relatively low periods (typically down
to around 100 Hz). Many micro-controllers provide PWM support on-chip, so the
generation of this signal is usually as simple as loading the PWM circuit.

However, due to the relative low period requirements of NanoMuscles it is quite feasible
to provide a software only PWM signal using either instruction timing or by using a
regular timer. In fact, given a NanoMuscles relative immunity to period length, this
software does not even need to keep to a strict timing scheme. The psuedo-code for such
a simple soft PWM is shown below:

Global Period = Period length count
Global OnTime = On Time length count

Static Counter = 0
SoftPWM()
{

If Counter == OnTime
 Enable Drive Circuit
Else

If Counter >= Period
 Disable Drive Circuit
 Counter = 0
EndIf

 EndIf
Counter++

}

Setting Period = 10 and OnTime = 5 in the globals above would cause the NanoMuscle to
be driven at half speed, provided the SoftPWM() function is called frequently enough (at
least Period * Minimum PWM Period, i.e. 10 * 100 Hz = 1KHz).

Now that we have a way of controlling the speed, the second issue is how do we decide
on a value for the duty cycle that will match the desired physical speed? Since there are
many variables that affect overall speed it would not be feasible to model the entire
system in the micro-controller. Instead we need to have some kind of measurement of
the actual speed and use a control loop to adjust the duty cycle to cause the NanoMuscle
to home in on the desired speed. There are two ways in which we can monitor the actual
NanoMuscle stroke speed:

Using external sensors In this case a movement sensor is tracked by the micro-

controller and the PWM duty cycle is adjusted accordingly.
Using end-stop timing Assuming that the NanoMuscle is cycling between its end-

stops, then by monitoring the time per stroke the micro-
controller can calculate any adjustments to the PWM duty
cycle.

The first case of external sensors might typically use an optical encoder to generate a bit
stream, the rate of which can be tracked against the desired rate, and the duty cycle
adjusted accordingly. However, this requires additional hardware to be included in the
device. If this is not possible (or un-economical) then end-stop timing can be used. In
this scenario the micro-controller tracks the time taken for the NanoMuscle to go through
each cycle by watching the C0 and C100 pins that are available on the NanoMuscle
driver circuit. This time can then be compared with the desired time. This is essentially
similar to using external sensors, albeit that it would take at least one full cycle before the
desired speed might be reached.

However, before an algorithm can be developed for either case, there are a number of
issues that must be taken into account due to the performance characteristics of the SMA
wire used to power NanoMuscles.

• An initial burst of power is needed to get the NanoMuscle to start to move
• The duty cycle adjustment to compensate for the difference between actual and

desired speed is different for the rotate and return cycles.

So the pseudo code for a simple algorithm that adjusts the PWN duty cycle using end-
stop sensing is shown below. This example assumes the NanoMuscle is being driven by
the NM 1076 Driver Board (refer to Application Note AN08 - Using the NM 1076 Driver
Board for more information).

global RotateOnTime = Initial Approximation
global DesiredTime = IdealHalfCycleTime

Contract()
{

/* First let’s get the NanoMuscle to start moving */

Enable Drive Circuit (Set CTRL to LOW)
While C0 Pin is HIGH
 Wait
Endwhile

/* Now drive to full rotation */

StartTime = Now
Enable Drive Circuit with PWM with RotateOnTime as
the Duty Cycle

Wait for C100 Pin to go HIGH
EndTime = Now

/* Now adjust OnTime so that next time around we are more accurate
*/

ActualTime = EndTime – StartTime
RotateOnTime = RotateOnTime + ((ActualTime – DesiredTime) * Kc)

}

The constant Kc will determine how quickly the system homes in on the desired speed
and to avoid unstable fluctuations a value of 0.5 has been shown to provide good results.

In most schemes the goal is to modify the power of the rotate cycle so that it matches the
return cycle (since the return cycle will vary with environmental temperature). To
achieve this, the return cycle simply needs to be timed and then this time used to in place
of DesiredTime for the next rotate cycle:

Extend()
{

/* Time the return cycle */

StartTime = Now
Disable Drive Circuit (Set CTRL to HIGH)
Wait until C0 goes HIGH
EndTime = Now

/* Now adjust DesiredTime so that next time around we are more
accurate */

DesiredTime = EndTime – StartTime

}

In reality, most production toys that use the above scheme provide a balance between
speed and symmetry. Typically they will cap the DesiredTime so that it does not go
above some threshold so that the whole motion does not seem too slow.

A number of improvements can be made to the above algorithms to fine-tune the results:

• The time taken for the NanoMuscle to start (in the Contract cycle) can be measured

and used to bias the first cycle to try and get a more accurate initial speed
• The PWM duty cycle can be adjusted in mid-cycle if the desired time has already

been missed
• Timeouts can be added to ensure the wait loops do not become indefinite.
• In rare cases the ideal Desired Time is actually much greater than both the rotate or

un-powered return time, then you can also provide power to the NanoMuscle to slow
down the return cycle.

	NM-AN03 – Speed Control using NanoMuscles
	Rev 1.7 – 29 February 2004
	On Time

